
Ballpit-NDF: Few-Shot Pouring with Local Neural
Descriptor Fields

1st Brian Lee
CSAIL

MIT
Cambridge, MA

brianjsl@mit.edu

2nd Eric Chen
CSAIL

MIT
Cambridge, MA
eric25@mit.edu

Abstract—Pouring is one of the most commonly executed
household manipulation tasks in our daily lives. A success-
ful pour, however, requires both a successful grasp of the
surrounding container and successful pouring dynamics on a
wide variety of object shapes and configurations. Can a robot
robustly perform pouring on objects outside its demonstration
distribution and in novel poses? We present Ballpit-NDF—an
end-to-end robotic manipulation system capable of pouring balls
from novel container shapes using Local Neural Descriptor
Fields [2]. Our approach utilizes an imitation learning paradigm
that leverages neural implicit representations trained on the
surrogate task of object reconstruction to find suitable grasp
poses through an energy minimization scheme on partial point
clouds. In particular, we make use of a limited number of
demonstrations of grasping on out-of-distribution categories and
show generalization performance to novel objects at evaluation
time. Combined with a promptable perception system that utilizes
the Grounding DINO [12] and Segment Anything (SAM) [11]
algorithms for segmentation to generate the point clouds, along
with off-the-shelf Differential Inverse Kinematics Solvers, we
find that our robot can successfully pour a ball into a ballpit
75% of the time for novel objects in three distinct categories
given only demonstrations on mug handles. We use a custom
Franka Panda robot in a simulated physics environment using
the Drake [21] robotics toolbox. Our code is publicly available
at https://github.com/brianjsl/BallPitNDF.

I. INTRODUCTION

A robot’s ability to generalize to new environments and
novel objects for manipulation is crucial for determining its
performance in the real world. A key challenge in training
robotic manipulation systems is the limited number of avail-
able demonstrations, which may not represent the types of
objects encountered at test time. For example, can a robot
that has been taught to manipulate mugs also be adapted to
manipulate objects of new categories such as baskets?

In our paper, we implement an end-to-end robotic manipu-
lation system that builds on top of the Local Neural Descriptor
Field [2] framework to select a grasp pose for objects of
various novel classes including baskets, bowls, and new classes
of mugs, for a commonly executed household manipulation
task: pouring. A succesful general pouring system, however,
requires a succesful grasping mechanism that generalizes
across categories.

Our system, dubbed BallpitNDF, works by applying prompt-
able deep geometric perception using a combination of the

Fig. 1: Using a three stage pipeline consisting of a
deep perception system using Grounding SAM, an energy-
minimization scheme to generate grasps using LocalNDF
descriptors, and off-the-shelf Differential IK solvers, we find
that our robot can succesfully pour a ball into a ballpit for a
wide array of novel object types 75% of the time.

newly proposed Grounding DINO [12] and Segment Anything
[11] algorithms with outlier pruning to segment out the objects
given text prompts before creating a point cloud. Using the
Local Neural descriptors of poses given from a set of baselines
demonstrations on out-of-distribution object categories (say

https://orcid.org/0000-0002-6179-433X
https://github.com/brianjsl/BallPitNDF

mug handles), our model then utilizes an energy optimization
with Local Neural Descriptors to generate new poses before
using off-the-shelf differential inverse-kinematics solvers for
the final pouring task. Our preliminary testing shows that Ball-
PitNDF is capable of pouring a ball into a ballpit succesfully
on a diverse array of novel object categories in arbitrary SE(3)
poses.

II. RELATED WORK

A. Mask Generation with Deep Perception

When generating point clouds with registered cameras on
objects, we often need to mask or segment out the desired
objects of interests. A vast array of literature exists [14] on
the topic, most notably the simple MASK R-CNN approach
used by He et. al [7]. Mask R-CNN, however, suffers from the
limitaiton that it must be fine-tuned on all object categories
of interest. In contrast, a recent approach called Grounding
DINO [22] makes use of contrastive learning to achieve a zero-
shot generalization capability to new labels. Grounding DINO
was trained on approximately 10 million images, extracting
image and text features to create a unified representation.
Building on Grounding DINO, Grounding SAM [16] leverages
the bounding boxes returned by Grounding DINO as prompts
to Segment Anything [11] for generating segmentation masks.
Trained on over 1 billion masks and 11 million images, the
Segment Anything model consists of a prompt encoder, image
encoder, and mask decoder to predict segmentation masks
given a prompt such as image coordinates or text. The out-
of-the-box bounding and segmentation capabilities of both
modules on novel object categories through the prompting
mechanism make them appealing choices for our own per-
ception tasks.

B. Pouring

Pouring is a general manipulation task that holds great
potential for streamlining various household tasks including
beverage preparation and object transferring. Previous ap-
proaches [8] have utilized self-supervised training, but still
suffer from the fact that they only work on objects seen at
training time and in default poses. Our approach works more
generally, for objects in novel poses and novel categories.

C. Generalizable Manipulation

Various imitation learning pipelines have been used for
robotic manipulation tasks. For known objects, pose estimation
can be used for manipulation [18], while for novel object
shapes, template matching approaches with coarse 3D prim-
itives can be used [6]. Unfortunately, these approaches often
fail when presented with objects that differ substantially from
simple geometric primitives. Our approach works by capturing
more general structure within object shapes.

D. Neural Implicit Representations for Robotic Manipulation

Neural implicit representations [13], [15] have emerged as
promising 3D representations for various robotic manipulation
tasks. Previous approaches have made use of Neural implicit

representations for a variety of manipulation tasks [9], [10],
[17], [19]. In particular, the work of [2], [5], [17], [20] build
on the Neural Descriptor Field framework [19] for learning
manipulation skills in a few-shot manner, where underlying
high-dimensional neural descriptors are used to transfer and
generalize demonstrations to novel object poses. Our work
utilizes the approach of [2] which extends Neural Descriptor
Fields to objects in not only novel poses but in novel categories
as well.

III. BACKGROUND: LOCAL NEURAL DESCRIPTOR FIELDS

A. Neural Descriptor Fields

Neural Descriptor Fields (NDF) are a form of learned object
representations that enable robots to perform manipulation
tasks on objects with arbitrary SE(3) pose from a small number
of demonstrations. The representation is given by a continuous
function f(x|P) : R3 × RN → Rd that encodes a 3d
coordinate x and point cloud P into a spatial descriptor. These
latents capture the relationship between the point and the
object geometry such that instances of a category of objects
(ie. mugs) would have similar neural descriptor values at
geometrically similar features (ie. mug handles).

NDFs are trained in a fully self-supervised manner using
the surrogate task of object reconstruction. More specifically,
NDFs train an occupancy neural network as proposed by
Mescheder et. al [13]. The occupancy network Φ(x, E(P)),
predicts the occupancy value (1 if inside the object, 0 other-
wise) given a 3D point x and an encoded point cloud E(P)
from PointNet. After training, the intermediate activations are
concatenated into a vector to get the neural descriptor field.

f(x|P) =

L⊕
i=1

Φi(x, E(P)) (1)

Neural Descriptor Fields can also be extended from indi-
vidual point descriptors to descriptors representing full SE(3)
poses. This is achieved by associating descriptors with a rigid
set of n ≥ 3 non-collinear query points, X ∈ R3×Nq , that
are constrained to transform rigidly together. The SE(3) pose
T is represented by its action on these points, TX , and the
category-level pose descriptor Z is computed as:

Z = F (T|P) =
⊕
xi∈X

f(Txi|P), (2)

where F maps the point cloud P and the SE(3) pose T
to Z ∈ Rd×Nq , enabling consistent encoding across similar
object categories.

NDFs facilitate few-shot learning of manipulation tasks us-
ing K demonstrations {Di}Ki=1, where each Di = (Pi,Ti

grasp)
consists of an object point cloud Pi, and a grasp pose Ti

grasp.
The query points Xgrasp are used to encode spatial descriptors
{(Zi

grasp)}Ki=1 for each pose:

Zi
grasp = F (Ti

grasp|Pi) (3)

These descriptors are averaged across demonstrations to obtain
category-level descriptors Z̄grasp. At test time, a novel object

Fig. 2: A L-NDF takes a coordinate x and a conditioning point
cloud P and uses an encode ε to encode P into a 3D feature
volume from which the voxel containing x is queried. These
feature are passed into an MLP where the final activations are
extracted to create a point descriptor

point cloud Ptest is used to predict the SE(3) poses Tgrasp
pick

through an energy minimization objective:

T̂ = argmin
T

∥F (T|P)− F (T̂|P̂)∥. (4)

where the target pose T̂ is found by optimizing over the object
pose l landscape to find a matching pose descriptor.

A desirable property of any category-level descriptor is that
of SE(3) equivariance: that is, the property that the descriptors
remain invariant under rigid transformations, that is, for any
rigid transform R ∈ SE(3),

f(x|P) ≡ f(Rx|RP) (5)

NDFs as proposed by Du et. al [19] achieve this through
specialized design choices in the form of Vector Neurons [4].

B. Local Neural Descriptor Fields

Despite excelling at handling arbitary poses within a cate-
gory, a key limitation of Neural Descriptor Fields (NDFs) is
the fact that they are merely category-level descriptors and
are thus unable to generalize to new object classes. This
limitation is primarily due to the PointNet encoder which
produces a global latent for the entire object. General objects,
however, often share common geometric shapes or features,
which motivates the usage of local features to generate more
generalizable features.

Local Neural Descriptor Fields (L-NDFs) as proposed by
Chun et. al [2] circumvents some of these limitations by
encoding object geometry locally using a latent grid of voxels
(see Fig. 2). This improved encoding scheme allows L-NDF to
produce better object representations for unseen classes at test
time. Unlike the approach of Du et. al, however, LocalNDFs
do not have SE(3) equivariance built-in. This is remedied
by adding a contrastive loss term that enforces descriptor
similarity between objects. More specifically, this is done by
enforcing descriptor similarity under a rigid transform T to be
roughly proportional to their inverse distance across different
rigid transformations:

sim(f(x1|P), f(Tx1|TP) ∝ 1

∥x1 − x2∥+ ϵ
(6)

Fig. 3: Query Point initialization for the L-NDF

where ϵ is some stability constant. This is done by using a
target reference point and comparing the cosine similarity of
the reference point with the inverse distance of a set of k− 1
other sample points. See [2] for additional details.

For few-shot manipulation tasks, L-NDFs leverage the vox-
elized encoding scheme to optimize object poses by focusing
on the localized geometric features. Unlike NDFs, which use
a global optimization of the query point locations initialized
at a random orientation, because L-NDFs only aggregate
information across local geometry,there is little information
relating distant geometric features. L-NDFs thus use a random
initial translation to transform the query points within the
bounding box of the observed point cloud to ensure proximity
to the target feature for accurate pose optimization.

Query point selection is crucial for balancing the capture of
sufficient local geometry while avoiding irrelevant features or
empty space. For precise tasks, such as grasping, query points
are sampled near contact geometry, while general tasks, like
surface placement, benefit from larger query point clouds that
maximize object volume and minimize empty space.

In our project, we use the same query point initialization
scheme as in [2], using a rectangle of size similar to the contact
geometry of the gripper (see 3).

IV. METHODS

Ballpit-NDF consists of 3 main modules:
1) Perception: We use a deep perception system that uses

GroundingDINO [12] and Segment Anything [11] to crop
out the target object in each camera before returning a
point cloud. Our deep perception systems are promptable,
allowing for bounding and segmentation to get target
point clouds despite never having seen the target object
class.

2) Grasping: We perform an energy minimization using
the LocalNDF descriptors to get target grasps from a
set of out-of-distribution demonstrations. This grasping
is SE(3) equivariant and generalizable to even out of
demonstration distribution object classes.

3) Kinematics: We use a simple trajectory planner that
utilizes off the shelf diff-IK with a state machine to create
a grasp and pour trajectory.

The primary contributions of our work are twofold: first,
the addition of a generalizable, robust deep perception module

Fig. 4: System Overview: Our simulation consists of three main modules: a perception module that utilizes GroundedSAM to
get object point clouds, a grasping module that does an energy minimization with the LocalNDF to generate target grasps, and
a Diff-IK planner used to execute the pouring. The target prompt (name of the object class) given to the GroundedDINO/SAM
module, along with query point hyperparameters used for simulation can be tuned with the hydra configuration file.

allows the system to be completely full-stack. In contrast to
previous works using Neural Implicits [2], [19], our system is
also designed to work on the more difficult task of pouring,
rather than simple pick and place.

A. Environment Setup

We use the Drake [21] robotics framework as the simulation
environment for our robotic experiments.

For all our experiments, we use a custom simulated Franka
Panda robot equipped with a Franka Hand Gripper, fixed at the
origin (0, 0, 0), with an InverseDynamicsDriver. The
authors chose a Franka Panda Arm (along with Panda Hand)
as the authors were interested in reintegrating some of the code
used in the original L-NDF paper for creating a demo station
which was simulated in Pybullet [3] (although we ended up
rewriting the demo station from scratch in Drake) along with
the possibility of testing on Real Franka Panda Arms that we
had available.

A novel container (typically a basket but we also test with
other objects including bowls, and mugs in novel poses) is
placed at position (0.5, 0, 0). A set of N (where N is a
customizable configuration parameter) balls are dropped from
random heights into the container. We typically set N = 1
for all experiments due to the speed of the physics engine
with a larger number of balls. We find from testing, however,
that the system can genaralize to an arbitrary number of balls
as well (tested up to N = 7). A ball pit (simulated using
a standard manipulation bin) is placed on the floor at
position (0,−0.2, 0) (although the exact position of the board
is a configurable parameter). We use balls as the object to be
poured mainly as a substitute for other things we might pour
in our day to day lives such as fluids due to the fact that fluids
are not yet available in the Drakes physics simulator.

We modeled a custom basket using Blender and used object
meshes of spheres we found on the internet for the balls
from the internet before processing them into sdf files. The
spheres use a simple point-contact model as they are simple
geometric primitives, while all other objects are constructed
to use hydroelastic contact with the make_sdf() function

TABLE I: Prompts for the Perception Module

Object Class Prompt

mug a coffee mug with a handle
basket a basket with a handle
bowl a bowl with a handle

in the manipulation package. The other objects (mugs,
bowls, and so on) are slightly modified from those publicly
available in the Shapenet [1] dataset. All objects are created
with coefficients of friction µstatic = 1.2 and µdynamic = 0.8
with hydroelastic modulus 5e7 and Hunter-Crossley Dissipa-
tion 1.25.

To capture the object from multiple perspectives, three
RGBD cameras are positioned around the object. No “cheat”
cameras are positioned underneath the object and we use only
the partial point cloud for the L-NDF energy minimization.

All configurable parameters (eg. L-NDF model size, opti-
mizers, query point initialization, object scale, and so on) can
be configured through a modifiable Hydra config file.

B. Perception

Our perception system takes in the RGB-D sensor readings
from 3 RGB-D sensor cameras and concatenates them to return
a merged partial point cloud of the container. The initial sensor
reading includes extraneous background objects (such as the
arm and other sensors), so preprocessing is required to isolate
the container. The high-level approach is to identify where the
container is and then crop it out before generating the point
cloud.

Our approach first gets the bounding box of the basket in
the RGBD images using the Grounding DINO model from
Huggingface [12]. We prompt the detection model with the
prompts given in table I and set the box and text threshold to
0.3. The bounding boxes are passed into Grounded Segment
Anything [16] to retrieve the segmentation masks for the
basket. To get proposal crop coordinates for the basket, we

https://huggingface.co/IDEA-Research/grounding-dino-base

Fig. 5: Bounding boxes for the target object, the basket,
from Grounding DINO, and the segmentation masks from
Grounding SAM. These results help generate crop coordinates
for the point cloud.

project the 2d coordinates of the bounding box (XYXY) to
the camera frame by undoing the pinhole projection.

Xc = (u− cx)
Zc

fx
(7)

Yc = (v − cy)
Zc

fy
(8)

However, naively doing this doesn’t work because the Z
coordinates of the bounding box’s top left and bottom left
coordinates are ambiguous. In many cases, they return inf
or are in conflict with objects in the background.

To address this issue, we retrieve the depth map within the
segmentation mask and extract the minimum and maximum
finite depth values. For each bounding box point, we generate
two 3D coordinates: one closer to the camera and one further
away using the min and max depth values above to mitigate
the ambiguity in the z-axis. We concatenate all the bounding
box 3d coordinates then compute the lower left and upper
left coordinate. To make the bounding boxes robust to slight
errors near the boundaries of the segmentation mask, we utilize
Statistical Outlier Removal as shown in 8: more specifically,
we use the KDTree library for efficient k- nearest neighbor
search for each point and then remove all points with mean
distance for that point with the nearest neighbors above 1.5
standard deviations for the global k-NN distances. The point
cloud from each camera is then cropped and merged to form
the partial point cloud of the basket. Finally, we connect the
point cloud output as input to the grasping module to select a
grasp pose for the basket.

C. Grasping with LocalNDFs

Our system makes use of the energy minimization scheme
proposed in [2] and explained in Section IIIB.

We use a pre-trained Occupancy Network with latent di-
mension 128 to get the Neural Descriptors, and collect demos
of handle grasping using the Drake environment with a manual
controller for the Panda Hand. For our query point initializa-
tion we use 20 random initial query points, along with 500

Fig. 6: Partial point cloud of the basket obtained by cropping
and merging the point cloud from each camera.

Fig. 7: We give the robot 10 different demonstrations of
grasping mug handles and take the average of the neural
descriptors across demonstrations as described in Section IIIA.

optimizer iterations. We give the robot 10 demonstrations of
grasping on a set of different Shapenet [1] mugs as shown in
Figure 7.

We then do an energy minimization to get the locations of
the handle query points on our new object as described in IIIB
along with the corresponding grasp pose. Because the grasp
pose used for the LocalNDF descriptors describes the pose
of the end-effectors rather than the entire robot hand, when
actually grasping the handle of the object in question we give

Fig. 8: Errors in the edges of the segmentation map (left) can lead to failures in the unprojected point cloud (middle). We thus
use statistical outlier removal to remove outliers from our perception maps to get our crops (right)

the robot hand an offset of (0, 0,−0.1).

D. Kinematics

We use Drake’s Differential Inverse Kinematics Solver to
produce viable trajectories for the Panda Arm with a simple
state-machine planner that moves between 8 different states
as illustrated in Figure 7. The UNPOUR state (as shown in the
figure) refers to the state of waiting for the bucket to get back
to level.

V. EVALUATION

A. Pouring Results

To quantitatively measure the success of our pouring system,
we tested the percentage of times our Robot successfully
poured the ball into the ballpit across a range of objects in
three different novel categories (i.e. not seen at demonstration
time): namely, a basket, a bowl, and a mug not seen during the
demonstrations in arbitrary rotations about the z-axis (due to
the need to put the ball in the container, the containers had to
be upright). The balls were dropped at a random height above
the container. We did the testing by measuring whether or not
the link of the sphere (ball) object was within the geometry
of the ballpit at the end of each physics simulator where we
run each simulation for 40 seconds (roughly the amount of
time needed for the ball to get into the pit). We summarize
our results in Table II. All object classes are tested for 100
iterations each.

B. Analysis

As expected, the system performs best with the mug class
with a 94% success rate as the test distribution matches the
demo distribution of mug handles. This is likely due to the fact
that the handles of the test mugs are similar to those of the
demonstration handles, despite the overall mugs often being

Fig. 9: State Machine Used for Trajectory Planning

significantly different from the test mugs. The system performs
second-best on the basket class with a 83% success rate,
also likely because the handle geometry is quite similar to the
demonstration mugs. Conversely, the model performs rather
poorly on the bowl class with only a 48% success rate
due to the differing geometry between test and demo shape
distributions.

TABLE II: Pouring Results with Mug Handle Demos

Object Class Iterations Pouring Success Rate (%)

mug 100 94
basket 100 83
bowl 100 48
average 300 75

Due to the random query point initializations of the LNDF,
along with other possible modes of failures (eg. collision
errors) the gripper occasionally fails to correctly grasp the
bucket. We discuss more limitations in section C.

We also try giving the robot demonstrations of grasping the
rims of a bowl and we find (from a few experiments) that the
robot is able to succesfully grab the rim of the basket (rather
than the handle) and succesfully pour, although we find that
the success rate of pouring the ball into the bin is not as high
as when gripping the handle.

C. Limitations and Next Steps

Perception Failures: Because our model makes use of
promptable vision models for segmentation, the model can
give a poor crop without a suitable prompt. For example, in
Fig 11 we use the prompt a basket rather than a basket
with a handle and we get a poor segmentation leading to
inaccurate point clouds. Similarly, we get poor results when
just using a mug so we use the more descriptive A coffee
mug with a handle.

Grasping Failures: Due to the random translational/rotation
initialization of the query points, on rare occasions the energy
minimization provides a bad grasp that leads the robot to
be unable to grab the basket. This can largely be mitigated
by running multiple random initializations (we use 20) and
taking the best one, but on rare occasions a grasping failure
is unavoidable with the current approach. Another possible
approach worth pursuing in the future is using the perception
mechanism to create a “rough” intialization of the query points

(a) A basket (b) A mug of new class (c) A Bowl

Fig. 10: Our object is capable of pouring objects of a diverse array of (out of distribution) classes, including baskets, new
mugs, and bowls

(a) Perception Failures (b) Grasping Failures (c) Kinematic Failures: Collision

(d) Kinematic Failures: Singularities (e) Generalization Failures

Fig. 11: Failures: a) Perception Failures due to poor prompting. Here we use the prompt a mug rather than the more descriptive
a coffee mug with a handle. b) A grasping failure due to poor stochastic initializations of the query points. c) A
kinematic failure has resulted due to collision between the object geometry and the gripper during the grasping phase. d) A
kinematic failure has occured due to the gripper getting into a singularity in the Diff-IK e) Generalization Failures on objects
with suitably different geometries.

and then optimizing using the energy minimization scheme to
the correct query point position and pose.

Brittleness and Model Generalization: Although our
model works well for distinct shapes that are similar to the
demonstration shapes, the model still fails to generalize to
completely general object classes. We also find from experi-
ment that the sucess rate of the grasps given by the energy
minimization procedure drops significantly when the model
geometry differs too much from the original demonstrations
even though the shapes are of the same class (eg. handles of
a basket with a much larger handle, see above).

Kinematic Failures: Like the grasping failures, because
we only use off-the-shelf Differential IK solvers, our robot
sometimes bumps into parts of the handle while trying to grab
the handle. Other times, the robot hand has to extend too far
and ends up reaching joint extrema (ie. singularities in the
diff-IK), which also leads to kinematic failure. Our work also

suffers from having to define a set of keypoints manually for
the differential IK solvers. Future directions for this work may
include adding motion planning and collision avoidance into
the system, either using GCS approaches like IRIS and/or rein-
forcement learning-based methods (the authors were actually
considering doing this but ran out of time).

Computation and Speed: Due to the need to perform on-
demand inference on a large vision model (GroundedSAM)
along with on-demand energy optimization to get the grasp
poses, BallpitNDF is rather slow, with predictions taking up
to 25 seconds on average on a Macbook M4 Pro. Parallelizing
the optimization with GPU acceleration may help the speed,
as may smaller, more efficient bounding box models, although
they may not have the same off-the-shelf querying capabilities
as our current model.

VI. CONCLUSION

We introduce BallpitNDF, a full-stack, deep-perception,
robotic manipulation system that utilizes a few-shot imitation
learning framework to pour balls from novel objects into a
ballpit. Our system has been shown to successfully pour from
various different novel objects including baskets, bowls, and
arbitrary (out of demo distribution) mugs, in arbitrary SE(3)
poses using only a small number of demonstrations on mug
handles. We also acknowledge the limitations of BallpitNDF,
including grasping failures due to the stochastic optimization
process, kinematic failures due to occluded pieces, and slow
speed due to on-demand inference and optimization in our
pipeline. We propose that future works remedy the kinematic
issues by adding motion-planning modules and the speed
issues with better hardware acceleration. We hope that this
work provides a valuable stepping stone in the pursuit of future
generalizable full-stack pouring systems. To that end, we have
released our code publicly on our github repo for others to
build off.

ACKNOWLEDGEMENT

We would like to thank the amazing staff of 6.4210 for their
wonderful and informative lectures throughout the semester.
We would especially like to thank our group’s project TA,
Ethan Yang, who was especially helpful during OHs and the
author of the LocalNDF paper Ethan Chun who helped discuss
some of his design choices and whose helpful discussions were
critical in the final implementation.

WORK DISTRIBUTION

Brian led the system design, implementation, integration,
and developed the LNDF grasping pipeline, camera and point
cloud setup, simulation physics on new objects, and kinematic
motion planners. Eric led the development of the Panda
driver setup, inverse kinematics, deep perception modules
(Grounding DINO and SAM), and the experiment testbed. All
members contributed to the communication of results.

REFERENCES

[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanra-
han, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran
Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An
information-rich 3d model repository, 2015.

[2] Ethan Chun, Yilun Du, Anthony Simeonov, Tomas Lozano-Perez, and
Leslie Kaelbling. Local neural descriptor fields: Locally conditioned
object representations for manipulation, 2023.

[3] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning. http://pybullet.org,
2016–2021.

[4] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea
Tagliasacchi, and Leonidas Guibas. Vector neurons: A general frame-
work for so(3)-equivariant networks, 2021.

[5] Jiahui Fu, Yilun Du, Kurran Singh, Joshua B. Tenenbaum, and John J.
Leonard. Robust change detection based on neural descriptor fields,
2022.

[6] Kensuke Harada, Kazuyuki Nagata, Tokuo Tsuji, Natsuki Yamanobe,
Akira Nakamura, and Yoshihiro Kawai. Probabilistic approach for object
bin picking approximated by cylinders. In 2013 IEEE International
Conference on Robotics and Automation, pages 3742–3747, 2013.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn, 2018.

[8] Yongqiang Huang, Juan Wilches, and Yu Sun. Robot gaining accurate
pouring skills through self-supervised learning and generalization, 2020.

[9] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and Ken Goldberg. Dex-
nerf: Using a neural radiance field to grasp transparent objects. CoRR,
abs/2110.14217, 2021.

[10] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke Zhu.
Synergies between affordance and geometry: 6-dof grasp detection via
implicit representations. CoRR, abs/2104.01542, 2021.

[11] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe
Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C.
Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything,
2023.

[12] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie
Yang, Qing Jiang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, and
Lei Zhang. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection, 2024.

[13] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d
reconstruction in function space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[14] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser
Kehtarnavaz, and Demetri Terzopoulos. Image segmentation using deep
learning: A survey, 2020.

[15] Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous signed
distance functions for shape representation. CoRR, abs/1901.05103,
2019.

[16] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao,
Jiayu Chen, Xinyu Huang, Yukang Chen, Feng Yan, Zhaoyang Zeng,
Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing Jiang, and Lei Zhang.
Grounded sam: Assembling open-world models for diverse visual tasks,
2024.

[17] Hyunwoo Ryu, Hong in Lee, Jeong-Hoon Lee, and Jongeun Choi.
Equivariant descriptor fields: Se(3)-equivariant energy-based models for
end-to-end visual robotic manipulation learning, 2023.

[18] John Schulman, Jonathan Ho, Cameron Lee, and P. Abbeel. Learning
from demonstrations through the use of non-rigid registration. In
International Symposium of Robotics Research, 2013.

[19] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenen-
baum, Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann. Neural
descriptor fields: Se(3)-equivariant object representations for manipula-
tion. CoRR, abs/2112.05124, 2021.

[20] Anthony Simeonov, Yilun Du, Lin Yen-Chen, Alberto Rodriguez,
Leslie Pack Kaelbling, Tomas Lozano-Perez, and Pulkit Agrawal. Se(3)-
equivariant relational rearrangement with neural descriptor fields, 2022.

[21] Russ Tedrake and the Drake Development Team. Drake: Model-based
design and verification for robotics, 2019.

[22] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu,
Lionel M. Ni, and Heung-Yeung Shum. Dino: Detr with improved
denoising anchor boxes for end-to-end object detection, 2022.

https://github.com/brianjsl/BallPitNDF
http://pybullet.org

	Introduction
	Related Work
	Mask Generation with Deep Perception
	Pouring
	Generalizable Manipulation
	Neural Implicit Representations for Robotic Manipulation

	Background: Local Neural Descriptor Fields
	Neural Descriptor Fields
	Local Neural Descriptor Fields

	Methods
	Environment Setup
	Perception
	Grasping with LocalNDFs
	Kinematics

	Evaluation
	Pouring Results
	Analysis
	Limitations and Next Steps

	Conclusion
	References

